On the Canonical Line Bundle and Negative Holomorphic Sectional Curvature

نویسنده

  • GORDON HEIER
چکیده

We prove that a smooth complex projective threefold with a Kähler metric of negative holomorphic sectional curvature has ample canonical line bundle. In dimensions greater than three, we prove that, under equal assumptions, the nef dimension of the canonical line bundle is maximal. With certain additional assumptions, ampleness is again obtained. The methods used come from both complex differential geometry and complex algebraic geometry.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

Fibrations with Constant Scalar Curvature Kähler Metrics and the Cm-line Bundle

Let π : X → B be a holomorphic submersion between compact Kähler manifolds of any dimensions, whose fibres and base have no non-zero holomorphic vector fields and whose fibres admit constant scalar curvature Kähler metrics. This article gives a sufficient topological condition for the existence of a constant scalar curvature Kähler metric on X. The condition involves the CM-line bundle—a certai...

متن کامل

Strictly Kähler-Berwald manifolds with constant‎ ‎holomorphic sectional curvature

In this paper‎, ‎the‎ ‎authors prove that a strictly Kähler-Berwald manifold with‎ ‎nonzero constant holomorphic sectional curvature must be a‎ Kähler manifold‎. 

متن کامل

Resolutions of non-regular Ricci-flat Kähler cones

We present explicit constructions of complete Ricci-flat Kähler metrics that are asymptotic to cones over non-regular Sasaki-Einstein manifolds. The metrics are constructed from a complete Kähler-Einstein manifold (V, gV ) of positive Ricci curvature and admit a Hamiltonian two-form of order two. We obtain Ricci-flat Kähler metrics on the total spaces of (i) holomorphic C/Zp orbifold fibrations...

متن کامل

A canonical structure on the tangent bundle of a pseudo- or para-Kähler manifold

It is a classical fact that the cotangent bundle T M of a differentiable manifold M enjoys a canonical symplectic form Ω. If (M, J, g, ω) is a pseudo-Kähler or para-Kähler 2n-dimensional manifold, we prove that the tangent bundle TM also enjoys a natural pseudo-Kähler or para-Kähler structure (J̃, g̃,Ω), where Ω is the pull-back by g of Ω and g̃ is a pseudoRiemannian metric with neutral signature ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009